## LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

## B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIFTH SEMESTER - November 2015
MT 5406-COMBINATORICS

Date : 13/11/2015
Time : 09:00-12:00
Dept. No. $\square$ Max. : 100 Marks

## SECTION-A

ANSWER ALL THE QUESTIONS:
$(10 \times 2=20)$

1. How many valid 8 digit binary numbers can be created? [Number should not start from zero.]
2. Define falling factorial.
3. Briefly explain recurrence relation with an example.
4. Find the sequences of the ordinary generating functions $3 x^{2}+e^{2 x}$ and $(3+x)^{3}$.
5. Define inclusion exclusion principle.
6. Find the co-efficient of $x^{5}$ in $(1+x)(1+2 x)(1+3 x)(1+7 x)(1+4 x)$.
7. Define derrangement.
8. Define Euler's function.
9. Determine $\varphi(100)$.
10. Define cycle index of a permutation group.

## SECTION-B

ANSWER ANY FIVE QUESTIONS:
$(5 \times 8=40)$
11. In a town council there are 10 democrats and 11 republicans. There are 4 women among democrats and 3 women among the republicans. Find the number of ways of forming a planning committee of 8 members which has equal number of men and women and equal number from both parties.
12. There are 5 Mathematics students and 7 Statistics students in a group. Find the number of ways of selecting 4 students from the group if
a) there is no restriction.
b) all 4 must be Mathematics students.
c) all 4 must be Statistics students.
d) all 4 must belong to the same subject.
13. Derive the Pascal's identity using the concept of generating functions.
14. Obtain the ordinary generating function (OGF) for the following sequences:
a) $(1,1,1,1,1, \ldots)$
b) $(1,-1,1,-1,1, \ldots)$
c) $(1,2,3,4, \ldots)$
d) $(1,0,1,0,1,0, \ldots)$
e) $(0,1,2,3, \ldots)$
15. State and prove Multinomial theorem .
16. Determine the permanent of the matrix $\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right]$.
17. Find the rook polynomial for the given chess board $C$ :

18. Derive the elements of the symmetries of a square?

## SECTION-C

## ANSWER ANY TWO QUESTIONS

$$
(2 \times 20=40)
$$

19. (i) Derive the recurrence formula for the Stirling number of first kind $s_{n}^{m}$. Formulate a table for $s_{5}^{5}$.
(ii) Prove that the number of distributions of n distinct objects into m distinct boxes with the objects in each box arranged in a definite order is the rising factorial $[m]^{n}$.
$(10+10)$
20. (i) Derive the formula for the sum of the first n natural numbers using its recurrence formula given by $a_{n}-a_{n-1}=n, n \geq 1$.
(ii) Determine the OGF of the sequence $\left\{(r+n-1) C_{(n-1)}\right\}, r \geq 0$ by differentiation of infinite geometric series.
21. State and solve Ménage problem.
22. (i) Determine the co-efficient of $x^{27}$ in $\left(x^{4}+x^{5}+x^{6}+\cdots\right)^{5}$.
(ii) State and prove Sieve's formula.
